
EcoEdgeInfer: Dynamically Optimizing Latency
and Sustainability for Inference on Edge Devices

Sri Pramodh Rachuri
PACE Lab

Dept. of Computer Science
Stony Brook University

srachuri@cs.stonybrook.edu

Nazeer Shaik
PACE Lab

Dept. of Computer Science
Stony Brook University

nshaik@cs.stonybrook.edu

Mehul Choksi
PACE Lab

Dept. of Computer Science
Stony Brook University

mchoksi@cs.stonybrook.edu

Anshul Gandhi
PACE Lab

Dept. of Computer Science
Stony Brook University

anshul@cs.stonybrook.edu

Abstract—The use of Deep Neural Networks (DNNs) has
skyrocketed in recent years. While its applications have brought
many benefits and use cases, they also have a significant envi-
ronmental impact due to the high energy consumption of DNN
execution. It has already been acknowledged in the literature that
training DNNs is computationally expensive and requires large
amounts of energy. However, the energy consumption of DNN
inference is still an area that has not received much attention,
yet. With the increasing adoption of online tools, the usage of
inference has significantly grown and will likely continue to grow.
Unlike training, inference is user-facing, requires low latency,
and is used more frequently. As such, edge devices are being
considered for DNN inference due to their low latency and
privacy benefits. In this context, inference on edge is a timely area
that requires closer attention to regulate its energy consumption.

We present EcoEdgeInfer, a system that balances performance
and sustainability for DNN inference on edge devices. Our
core component of EcoEdgeInfer is an adaptive optimization
algorithm, EcoGD, that strategically and quickly sweeps through
the hardware and software configuration space to find the jointly
optimal configuration that can minimize energy consumption and
latency. EcoGD is agile by design, and adapts the configuration
parameters in response to time-varying and unpredictable in-
ference workload. We evaluate EcoEdgeInfer on different DNN
models using real-world traces and show that EcoGD consistently
outperforms existing baselines, lowering energy consumption by
31% and reducing tail latency by 14%, on average.

Index Terms—inference, energy, latency, workload changes

I. INTRODUCTION

The adoption of Deep Neural Networks (DNNs) has sky-
rocketed in recent months and years with applications in
image recognition, speech recognition, and natural language
processing [1]. While these applications have brought many
benefits to society in general, the underlying compute require-
ments of executing the DNNs have had a severe environmental
impact, leading to significantly high energy consumption and
carbon emissions [2]. This negative impact of training large
and expensive DNNs has been highlighted in recent works, and
has already resulted in research efforts to regulate the monetary
and environmental cost of DNN training, for example, by
leveraging hardware techniques [3], [4].

However, the sustainability costs of DNN inference have
not received as much attention, yet. This is likely because
DNN inference has much lower computational needs (usually
completes in seconds or minutes, compared to hours or days

for training). Unlike training, inference is usually a one-shot
operation, where the input data is fed to the DNN and the out-
put is generated without any further adjustments to the model
or need for complex backpropagation operations; this makes
inference a lightweight and short-lived task. Unfortunately,
with the increasing popularity of online tools like ChatGPT [5]
and GitHub Copilot [6], the usage of inference has signifi-
cantly grown, and will likely continue to grow. Consequently,
even though it has lower computational demand, inference is
executed much more frequently than training [7], and can thus
have a substantial environmental impact. Addressing the high
energy costs of the quickly scaling inference applications is
thus a crucial and timely problem.

DNN inference, unlike training, is user-facing, and thus
requires low (mean and tail) latency. The inference latency
experienced by an end-user can be broadly categorized into
network latency (to and from the cloud service) and computa-
tion latency. By deploying DNN inference on edge devices, the
network latency can be significantly reduced as the input and
output data does not have to be transferred to/from the cloud.
This is especially useful for real-time and privacy-conscious
applications like autonomous vehicles, augmented reality, and
smart cities. Depending on the application, edge devices
may be deployed in remote locations with limited access to
power sources, and some might even be solar- or battery-
powered [8]. As such, minimizing the energy consumption of
DNN inference is important in the edge computing setting.

Addressing the energy costs of DNN inference on the edge
is a challenging problem for several reasons:
(1) The energy consumption of inference on edge depends on

both hardware and software configurations. While there
are tuning knobs that can influence energy consumption,
such as GPU operating frequency and batch size, their
impact on energy may be inter-related, and thus they
cannot be optimized independently.

(2) There is an inherent tension between reducing energy
consumption and improving inference latency, resulting
in a non-trivial optimization to balance the energy-latency
tradeoff. For example, setting the GPU frequency to the
maximum allowable value can reduce inference latency
but at the expense of high energy.

(3) Although the effect of batch size on energy has been

1

studied, it is not always clear how batch size affects
inference latency, especially under dynamic workload.

(4) Inference applications are user-driven, and thus, the re-
quest load can change dynamically and unpredictably,
requiring an agile solution that can adapt to changing
conditions quickly and with low overhead to prevent high
inference tail latencies.

There have been several recent works that focused on
reducing the energy consumption of DNN training. However,
these solutions are not directly applicable to DNN inference
as the requirements (e.g., memory, compute capacity, and tail
latency) and usage patterns (e.g., request rate and burstiness)
for training and inference are different. Moreover, most of the
prior works on DNN inference have focused on server and
cloud environments [9], and have not considered the unique
challenges of running inference on edge devices, such as
limited power/energy and low-overhead requirements. Finally,
while there have been works that analyze the impact of
hardware and software parameters on energy consumption of
DNN execution [10], [11], they are offline studies that neither
consider dynamic workload conditions nor focus on designing
an adaptive solution for practical deployments. As such, there
is a gap in research on adaptive solutions for energy-efficient
DNN inference on the edge. We discuss related works in detail
in Section III.
Our contributions: In this work, we first present EcoEdgeIn-
fer, a framework for DNN inference serving on edge devices
that regulates their energy consumption and latency at run-
time. EcoEdgeInfer works by dynamically and transparently
tuning hardware and software parameters based on recom-
mendations from optimization algorithms. We have imple-
mented EcoEdgeInfer on NVIDIA Jetson devices using Python,
ensuring seamless integration with existing DNN inference
libraries like PyTorch. The code for EcoEdgeInfer is publicly
available as a GitHub repository to promote further research
and facilitate reproducibility.1

Our key contribution is an optimization algorithm, EcoGD,
specifically designed for sustainable inference on edge de-
ployments. EcoGD is inspired by Gradient Descent, and en-
hances its functionality via real-time adaptation to changing
workloads, estimating the cost of unexplored configurations
and gradients, and maintaining low overhead. To prevent
fluctuations in performance and maintain low tail inference
latency, EcoGD limits its exploration space; to react to evolv-
ing workload conditions quickly, EcoGD maintains a limited
memory of explored configurations.

We experimentally evaluate EcoGD against existing solu-
tions with different DNN inference models. Our results show
that EcoGD converges to superior configurations under fixed
and bursty synthetic load patterns, reducing energy consump-
tion by 22% and lowering mean inference latency by 13%,
on average, compared to existing solutions. Further, EcoGD’s
achieved energy and latency values are within 2% and 10%,
respectively, of those achieved by an (impractical) offline

1https://github.com/PACELab/EcoEdgeInfer

TABLE I
TECHNICAL SPECIFICATIONS OF NVIDIA XAVIER NX

Specification Value
CPU 6-core Nvidia Carmel
CPU Freq. range 115 MHz – 1.9 GHz; 25 steps of 77 MHz
GPU NVIDIA Volta
GPU Cores 384 CUDA Cores + 48 Tensor Cores
GPU Freq. range 114 MHz – 1.1 GHz; 15 steps of 90 MHz
Memory 8 GB LPDDR4x
Throughput 21 TOPs
Default Power Modes 10W, 15W, 20W
Jetpack version 5.1.3 [L4T v35.5.0]
Framework PyTorch 2.1.0
Operating Sys. & Libraries Ubuntu 20.04.6; CUDA 11.4 + cuDNN 8.6

optimal solution. Importantly, EcoGD effectively adapts to
changing load conditions, consistently outperforming other
solutions by lowering energy consumption by as much as 66%
(with 31% average reduction) and reducing tail latency by as
much as 91% (with 14% average reduction) under real-world
workload traces. To the best of our knowledge, ours is the first
work that jointly optimizes energy consumption and latency of
DNN inference on edge devices at runtime while adapting to
changing workload conditions.

II. BACKGROUND

In this section, we provide the necessary background on the
problem of energy-efficient DNN inference on edge devices.
We first discuss the types of edge devices we consider in
this paper and the control knobs they offer to regulate energy
consumption. We then discuss workload parameters that can
also be adjusted to regulate energy consumption. Finally, we
discuss the significance of the request arrival pattern on our
problem and how it can impact energy consumption.

A. Smart Edge Devices for Deep Learning

Edge computing is the practice of processing data near
the source of data generation rather than relying on cen-
tralized data centers. While a range of devices, from IoT
sensors to on-premise workstations, can be considered edge
devices, we focus on edge devices with limited computational
resources, such as single-board computers, called smart edge
devices [12]. These devices are typically equipped with low-
power processors, small amounts of memory, and are energy-
limited.

With the launch of NVIDIA’s Jetson series [13], running
Deep Learning (DL) models on edge devices has become
feasible due to the integrated GPUs with CUDA support. For
example, NVIDIA Xavier NX has 8 ARM cores, 384 CUDA
cores, 48 Tensor cores, and 8GB of LPDDR4x memory; it con-
sumes at most 20W of power. (More details about the Xavier
NX device, which we also use in our evaluation, are provided
in Table I for reference.) However, the limited computational
resources on these devices also make it challenging to run
large models in an efficient manner.

B. Hardware parameters on edge devices for managing energy

To regulate energy consumption, NVIDIA provides three
power modes (10, 15, 20 Watts) as default presets to change

2

hardware parameters of the Xavier NX device. However, we
can also manually change hardware parameters for greater
and finer control. While running DL inference, we noticed a
significant impact on energy consumption by varying the GPU
frequency, a moderate impact by varying the CPU frequency,
and almost no impact when varying the number of CPU cores.
This is because the GPU is the primary resource used by DL
inference. Further, Python being single-threaded, the CPU is
not used for parallelism; hence, the number of cores does not
significantly impact energy or performance. So, we only focus
on GPU and CPU frequencies in our experiments.

C. DNN Inference Parameters

In addition to hardware parameters, there are also software
or workload parameters that can be adjusted to regulate energy
consumption. When a user submits an inference request, the
DNN model and their weights are fixed by the user. However,
the inference system or framework can still adjust knobs like
the batch size and how the model’s task graph is loaded (stati-
cally or dynamically). Static loading using Pytorch’s JIT Trace
does not have a significant impact on energy consumption in
the long run when compared to dynamic loading because it
only shifts the model initialization and loading [14]. So, we
ignore the model loading mechanism and focus on the batch
size as a potential tunable parameter.

Da et al. [15] showed that increasing the batch size always
leads to increased throughput (not necessarily latency) due
to higher parallelism and utilization of the GPU. They also
showed that increasing the batch size can lead to energy
savings, but these savings taper off after a certain point. The
maximum batch size a model can handle is limited by the
device’s memory. Given the limited memory on edge devices,
the batch size is kept low to prevent out-of-memory errors.

D. Request Arrival Pattern

Another factor that impacts DNN inference performance,
especially on the edge, is the arrival pattern of requests. This
is also a factor that has not been thoroughly investigated by
prior works that focus on regulating DNN inference energy.
Note that the arrival pattern of requests does not just refer to
the arrival rate, but can also include the distribution of requests
and factors such as burstiness of arrivals.

Consider an inference serving system. When the rate of
inference requests coming in is low, the system can adjust
its parameters (such as CPU and GPU frequency) to strike a
balance between inference latency and energy consumption.
However, when the request rate is high, the system may have
to tune its parameters to maximize performance to handle
the high load. In fact, for resource-limited edge devices, it
is possible that a long queue starts building up quickly at
high request rate as the serving capability of the device may
be limited, thereby constraining the system to exclusively
pick the highest performance configurations. As such, the
optimal system configuration and the potential for tuning the
configuration parameters are affected by the request rate.

The request arrival pattern also indirectly affects the system
performance through the batch size. While batch size can help
increase the throughput and energy efficiency [15], it also leads
to increased tail latency due to the time taken to accumulate
the batch before processing [16]. For example, if we have a
constant stream of requests with an inter-arrival time (IAT)
of 10ms, it will take ∼100ms to accumulate a batch size
of 10. But, if the IAT is 100ms, it will take about 1s to
get to the same batch size. So, a lower batch size may be
preferable for a high IAT workload to avoid large accumulation
delays and long tail latencies. However, if the arrival pattern
is bursty, the above conclusions can change; a burst of 10
(or more) uninterrupted requests can immediately lead to
an accumulation of the required batch size, with additional
requests now waiting to be served. Worse, the request arrival
pattern can change unpredictably, especially for user-facing
workloads [17], necessitating an agile solution that adapts to
arrival pattern changes at runtime.

Finally, the content of requests can also impact inference la-
tency and energy. For example, images with different blurring
and brightness may have different processing times and energy
consumption for image recognition. For this paper, we do not
consider such content-based workload changes, and limit our
focus to changes in arrival rate and request distribution.

III. RELATED WORK

Optimizing the energy or carbon usage of Deep Learning
workloads has been an important topic of research in the past
few years. However, most of the work has focused on model
training on server-grade GPUs and machines. There are very
few works that focus on inference workloads on edge devices;
we discuss these at the end of this section.

A. Energy Efficient DNN Training

Google’s CICS [18] focuses on minimizing the carbon
footprint of data centers by temporally delaying flexible
workloads to greener times. Zeus [3] optimizes the energy
efficiency of DNN training by finding optimal job and GPU-
level configurations. PowerFlow [4] is a GPU cluster sched-
uler that reduces the average job completion time under an
energy budget. Cloud providers have also started offering
Machine-Learning-as-a-Service (MLaaS) platforms that run on
heterogeneous GPU clusters and automatically optimize the
hardware, software, cluster configuration, and hyperparameters
for training DNNs to reduce the energy consumption and
improve the performance of the training jobs [19].

Works like PowerFlow [4] and Zeus [3] change the fre-
quency of server-grade GPUs using power-limit APIs and
thereby reduce energy consumption. Since we are focusing on
a single device optimization, Zeus is the closest work to ours.
Zeus uses Multi-Armed Bandit (MAB) to find the optimal
batch size and performs exhaustive search to find the optimal
GPU power limit for server-grade GPUs. Zeus can afford to
run an exhaustive search on GPU power limit settings since it
does not consider a change in workload (i.e., only considers
a static training setting). However, in our inference case, due

3

to the varying workload patterns, an exhaustive search is not
feasible, as we show in Section VI. The MAB approach is
feasible, and we compare against MAB (as a baseline) in our
evaluation in Section VI.

Prashanthi et al. [10] is one of the first works focusing on
changing CPU and GPU frequencies for DNN workloads on
edge devices. The authors study the impact of power modes
(presets of frequency limits by NVIDIA) on CPU and GPU
utilization, training time, and energy usage. However, the work
focuses on DNN training. Instead, our work here focuses on
DNN inference, which is better suited for resource-constrained
edge devices than (computationally heavy) DNN training.

The observations made for training workloads do not readily
apply to inference workloads. For example, Zeus [3] does not
consider their system to have a queue of jobs that need to be
scheduled because training workloads are usually long running
and are not sent by users in a queue. Inference workloads, on
the other hand, take a lot less time to complete but are more
frequent and arrive dynamically. Hence, we must consider
the real-time queueing effects on latency when optimizing for
user-facing inference workloads.

B. Energy Efficient DNN Inference on Edge
JEDI [20] focuses on edge devices and considers inference

workloads. The authors create a TensorRT-based pipelining
framework to increase resource utilization and performance.
They consider parameters like multi-threading, multi-device
(CPU, GPU, DLA) processing, and buffer assignment. While
JEDI results in lower energy consumption, this is not the
primary objective and is a by-product of their optimization. As
such, they did not attempt to tune energy-saving knobs, like
CPU and GPU frequencies, which we believe are powerful
and lightweight and lightweight tools to optimize energy
consumption.

Dutt et al. [11] focus on the inference side of DNN work-
loads and profile the effects of processor frequency tuning on
energy consumption. However, they do not consider workload
parameters and do not consider latency or performance as an
objective. Further, only a static offline workload is considered
for evaluation. By contrast, we specifically focus on the
tradeoff between energy consumption and inference latency,
and consider dynamic changes in inference workload.

Based on our literature review above, we believe there are
very few prior works on jointly optimizing the energy con-
sumption and latency of DNN inference workloads on edge
devices by tuning both hardware and software parameters.
Further, we are unaware of existing research that considers
the impact of request arrival pattern on energy consumption
and inference latency for edge devices.

IV. SYSTEM DESIGN

In this section, we describe the system design of our
solution, EcoEdgeInfer. We primarily break down the features
of EcoEdgeInfer into: (1) Core Inference System, (2) Metrics
Collection, (3) Optimizer, and (4) Applying the optimal config-
uration. Figure 1 illustrates the system design of EcoEdgeInfer
and the interactions between these components.

134 Batching
Buffer

2
1
2
3
4

Batch
Processing

Output
Request Queue

Inference
Requests

CPU
GPU

Core Inference System

Latency Monitor Energy Monitor

EcoEdgeInferHardware

Arrival time End time St
ar

t/S
to

p
Si

gn
al

in
g

OptimizerFrequencies Batch Size

Fig. 1. Illustration of EcoEdgeInfer’s system design.

A. Core Inference System

The core inference system is the component of EcoEdge-
Infer that actually performs the DNN inference and batching,
and is the only component that interacts with the developer’s
code. It also allows us to collect the metrics that are used by
the optimizer.

Every time the inference method is called, the core inference
system receives the input data and adds it to the request queue.
On a separate thread, it waits for the request queue to have
enough requests to form a batch (in the batching buffer) and
then performs the inference on the batch. The batch size is
determined by the optimizer and can be changed dynamically.
The request queue, the batching buffer, and the tunable batch
size together allow the system to process requests with varying
arrival rates by staging the incoming requests; see Figure 1.
The core inference system sends signals to the monitoring
system to start collecting metrics while processing each batch.

B. Metrics Collection

The monitoring system is responsible for collecting (at least)
the latency and energy consumption metrics based on the
signals received from the core inference system. The latency
monitor uses the arrival timestamp of each request in the
request queue and the completion timestamp of the request to
calculate the request’s latency. The energy monitor starts and
stops logging the power sensors based on the signals received
from the core inference system. We log the power sensors
every 10 ms over the i2c interface and the sysfs interface
provided by NVIDIA’s API [21]. The latency and energy
metrics collected for a single batch may be too small and
can lead to noisy values. So, the monitoring system stores
the metrics in a temporary cache till enough samples are
collected. In our experiments, we found that monitoring for
∼400 requests is enough to remove the noise and get a good
estimate of the metrics. This duration (of 400 requests) is
referred to as an Optimizer Step in the rest of the paper.

C. Optimizer and optimization policies

The optimizer is the core component of EcoEdgeInfer that
determines the optimal parameter values to be used. It uses the
metrics collected in the previous optimizer step to calculate
a cost function. In our paper, we consider the cost function
to be the mean of homogenized latency and homogenized

4

energy consumption; we aim to minimize this cost function.
In general, any combination of these two metrics could be
employed as needed. To homogenize the latency and energy
metrics, we divide the observed latency and energy values in
each experiment by those obtained when all parameters are set
to their maximum value. Similar approaches have been used in
prior work to balance multiple metrics in the objective function
(latency and energy, in our case) [3], [22].

The calculated cost is then used by the optimizer to predict
the optimal CPU Frequency, GPU Frequency, and Batch Size
that can be used for the next optimizer step. In addition to
our algorithm, EcoGD (described in the next subsection), we
have implemented five other optimization policies inspired
by prior works as baselines, including Grid Search, Multi-
Armed Bandit, and Bayesian Optimization. These baselines
are detailed in Section V-C.

D. Predicting the optimal configuration via EcoGD

We design a specific optimization algorithm, EcoGD, for the
problem of optimizing the parameters of inference on edge.
Our EcoGD algorithm is inspired by the gradient descent al-
gorithm. However, unlike standard gradient descent problems,
in the inference on edge setting, we do not have access to the
gradient of the cost function nor do we readily have all the data
points needed to calculate it. As such, the traditional gradient
descent algorithms cannot be used as-is; similar observations
have been made by prior works addressing different problems
as well, such as the problem of tuning the parameters of
transactional memory [23]. EcoGD can be considered a variant
of the broad family of local-search heuristic algorithms, which
includes algorithms like hill climbing and simulated annealing,
with Tabu search being the closest algorithm to EcoGD [24].

Algorithm 1 shows the pseudo code for EcoGD along
with the input, output, and parameters of the optimizer (lines
1–4). At every optimizer step, EcoGD either explores the
neighboring configurations (lines 7–9) or, if the neighborhood
has been sufficiently explored, jumps to a new configuration
(lines 11–20).

Every configuration in the 3-dimensional space of CPU
Frequency, GPU Frequency, and Batch Size has 26 neighbors:
6 directly adjacent (i.e., change in only one dimension), 4 di-
agonally adjacent in the CPU-GPU plane (i.e., change in both
frequency dimensions), and 16 other diagonally adjacent con-
figurations (i.e., change in batch size and at least one frequency
dimension). However, EcoGD only evaluates the cost of the
6 directly adjacent neighbors of the current configuration for
exploration (line 6). This reduces the number of configuration
evaluations from 26 to just 6, thereby significantly reducing
the exploration time. The 4 configurations that are diagonally
adjacent in the CPU-GPU plane are instead estimated (line 10)
using the following equation:

Cost(i+ x, j + y, k) =
Cost(i, j + y, k) + Cost(i+ x, j, k)

2
(1)

where Cost(i, j, k) is the cost of the configuration with CPU
Frequency i, GPU Frequency j, and Batch Size k. Note that

Algorithm 1 Pseudo code for EcoGD
1: Input: History matrix H containing the cost of all ex-

plored configurations.
2: Output: Next configuration to run C =

(CPU,GPU,Batchsize)
3: Parameters: Memory size Memsize, Maximum loops

Max Loops, Starting Config Cstart

4: Initialize: loop counter ← 0, last center ← Cstart

Function EcoGD(H):
5: H = copy(H,Memsize)

▷ Trim history to last Memsize configurations
6: unexplored nbhr

← {nbhr ∈ 6-nbhrhd(last center) s.t. nbhr /∈ H}
▷ Finding unexplored neighbors in 6-neighborhood

▷ neighbour, neighborhood abbreviated as nbhr, nbhrhd
7: if Len(unexplored nbhrs) > 0 then
8: C ← unexplored nbhrs[0]
9: return C ▷ Return the first unexplored nbhr if any

10: nbhrhd history
← explored nbhrs history(last center,H)
+ unexplored nbhrs history(last center,H)

▷ History of unexplored neighbors are estimated
11: best config ← argmin(nbhrhd history)
12: if best config ̸= last center then
13: loop counter ← 0
14: else
15: loop counter ← loop counter + 1
16: if loop counter > Max Loops then
17: best config ← random nbhr(last center)

▷ Jump to a random neighbor if stuck
18: loop counter ← 0
19: last center ← best config
20: return best config

x, y ∈ {−1, 1} indicates the diagonal neighbors of the current
configuration in the CPU-GPU plane.

The remaining 16 diagonally adjacent configurations are
not considered for estimation because we could not find a
reliable and accurate approach to estimate the cost of such
configurations. With this approach of selective exploration
and estimation, EcoGD is able to converge to the optimal
configuration quickly while following a path with reasonable
costs. This is a key feature of EcoGD that distinguishes it from
Tabu search and other local-search heuristic algorithms.

If the neighborhood is already explored, EcoGD jumps
to the neighbor that has the lowest cost and the process is
repeated (line 11). We do not let EcoGD jump farther than the
neighboring configurations to avoid the optimizer from moving
to a vastly different configuration. In practice, we found that
jumping farther than the neighboring configurations does not
lead to a significant improvement in the cost function and can
cause repeated overshooting over the optimal configuration.
Note that a learning rate like mechanism cannot be used and
tuned because the configuration space is discrete and only the

5

immediate neighbors are possible due to quantization.
To avoid re-exploring the same configurations repeatedly,

EcoGD maintains a list of recently explored configurations and
the corresponding costs. We limit the number of configurations
remembered to a fixed number to allow adaptation to changing
workload conditions (lines 12–18). And to avoid getting stuck
in a local minima, EcoGD jumps to a random neighbor when
the same configuration is predicted more than a fixed number
of times and all the neighbors have been explored already (line
17).

EcoGD maintains only a few configurations and costs in
its history to minimize physical memory overheads and also
to quickly adapt to changing workloads by discarding stale
configurations (line 5). The details of the hyperparameters of
EcoGD are discussed in Section V-E.

E. Applying the optimal configuration

After the optimizer predicts the optimal configuration, it sets
the optimal CPU frequency using the cpufreq driver and the
optimal GPU frequency using NVIDIA’s API [21]. In parallel,
the optimizer sends the optimal batch size value to the core
inference system, to be used for the subsequent inferences.

V. EXPERIMENTAL SETUP AND METHODOLOGY

In this section, we describe the experimental setup, work-
load traces, baseline algorithms, and the methodology we em-
ploy for our experimental evaluation (presented in Section VI).

A. Experimental setup

We perform all evaluations on an NVIDIA Jetson Xavier
NX device; see section II-A for the technical specifications of
the device. We use PyTorch v2.1.0, CUDA v11.4, and cuDNN
v8.6 for our experiments.

We primarily use Resnet50 from the torchvision library [25]
to extend our evaluation to a different model; for this model,
we use an image of size 224×224 as the input request. We
also use a transformer-based model, BERT-Tiny [26], [27], to
extend our evaluation; for this model, we use a random text
of size ∼1KB as the input request.

B. Request arrival patterns and traces

A key contribution of our evaluation is considering the
impact of the request arrival pattern. As such, we perform
our evaluations under three different inference request arrival
patterns. First, we consider fixed inter-arrival times (time
between successive requests); these conditions represent a
controlled workload setting. We choose inter-arrival times of
50ms and 90ms, representing high and low load, respectively;
these values were also chosen to ensure a stable system,
as the minimum inference service time is about 40ms for
Resnet50. Second, we consider bursty arrivals, representing
a more extreme workload setting. Specifically, requests arrive
in bursts of 10 requests every 500ms or every 900ms, thus still
maintaining an average inter-arrival time of 50ms and 90ms,
respectively, but with a more bursty arrival pattern.

Finally, we also evaluate using snippets from three real-
world time-varying load traces. Publicly accessible inference

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ad

Azure
Bellevue
Twitter

Fig. 2. Timeseries of normalized load for the traces used in our evaluation.

request traces are not widely available. As such, we consider
the following traces in our evaluation.

1) Bellevue trace: Number plate reading is a popular in-
ference task at edge devices and smart cameras, and is
used in applications such as traffic monitoring and parking
management. The number of inference requests arriving at
such edge devices is proportional to the number of vehicles
passing through the camera at any given time [28]. To
generate realistic traffic for this inference task, we use
the Bellevue Traffic Video Dataset [29], which contains
video data of vehicular traffic in Bellevue, Washington. We
extract the number of vehicles per second from the dataset
and use this as a proxy for the incoming rate of inference
requests.

2) Twitter trace: Social media content moderation is another
popular inference application to perform large-scale tasks
such as sentiment analysis and fake news detection. In this
application, each request for inference corresponds to a
tweet that needs to be analyzed. To simulate the load for
such an application, we use Twitter’s sampled stream of
tweets [30], [31]. We select a 3-hour period surrounding
midnight on December 31, 2020, and January 1, 2021, from
the East Coast of the United States to create a localized
traffic trace. The number of tweets per second serves as a
proxy for the inference request rate.

3) Azure trace: Owing to the increasing popularity of private
edge data centers, well-known cloud paradigms such as
serverless inference [32], [33] are expected to be employed
at the edge in the near future [34]. We use the Azure
Functions Traces [35] to represent the load on such an
edge system. The rate of serverless invocations is used as
a proxy for the arriving request rate at the edge device.

In all traces, we select 3 hours of data that exhibit diverse
traffic patterns. Figure 2 shows how the load varies over time
in the three traces; the load is normalized to the maximum
for each trace for ease of comparison. We see that the Azure
trace has a small surge at the start and then a more significant
surge to the maximum load, and then a drop back to moderate
load. The Bellevue trace has a more stable load with a gradual
increase towards the end and then a sudden drop. In the Twitter
trace, we see a sharp surge to maximum load and then a
gradual drop to a very low load. The trace data is scaled to our
device capacity and is used to create a timeseries of request
rates arriving at our edge device. In terms of average load (or

6

request rate) post-scaling, the Bellevue trace has the highest
load, followed by the Twitter and the Azure traces.

C. Comparison baselines

In our experimental evaluation, we compare EcoGD with
five other baseline algorithms.
1) Grid Search is a simple optimization policy that exhaus-
tively tries all possible combinations of CPU Frequency, GPU
Frequency, and Batch Size, and then selects the one with the
lowest cost. Grid Search is easy to implement and should result
in the optimal configuration but it requires significant running
time to sweep over all possible combinations of parameters.
For example, on the NVIDIA Xavier NX, the search space is
25× 15× 16 = 6, 000 combinations. While Grid Search may
be impractical for real inference systems (requiring a full Grid
Search to be re-performed every time the workload conditions
change), we use this policy as a baseline in our evaluation.
2) Linear Search starts with a default configuration sweep
through one dimension at a time (from among batch size, CPU
frequency, and GPU frequency) and selects the configuration
in that dimension that gives the lowest cost. It then moves
to the remaining dimensions iteratively to optimize their
configuration, while fixing the optimal configuration for the
prior dimensions. Once the search is complete, a configuration
which is locally optimal in each dimension is reported. The
policy is much faster than Grid Search as it only searches
through 25+15+16 = 56 configurations. However, like Grid
Search, Linear must be rerun every time the workload changes.
3) DVFS is the default policy (enabled by default) used in
servers and edge devices to dynamically set the CPU and
GPU frequency depending on the incoming load. The Xavier
NX device ships with many governor policies for automatic
DVFS control for CPU and GPU. Among them, schedutil and
nvhost podgov are the default governors for CPU and GPU,
respectively. We also experimented with other governors, but
there were no remarkable differences in performance. As such,
we report DVFS results under their default CPU and GPU
governors. DVFS, in theory, automatically adapts to chang-
ing workloads and is thus an adaptive policy. For example,
schedutil constantly monitors the CPU utilization and adjusts
the CPU frequency accordingly [36]. Note that DVFS does
not manage the batch size, and so we use a reasonably large
(for edge devices) batch size of 16 and a moderate batch size
of 8 in our experiments.
4) Bayesian Optimization is an optimization technique that
has been often used in systems literature [37]–[39] to optimize
black-box functions. It uses a probabilistic model to predict the
cost function and then uses an acquisition function to decide
the next configuration to try. We use the GaussianProcessRe-
gressor and RadialBasisFunction kernel from the scikit-learn
library to implement Bayesian Optimization [40].
5) Multi-Armed Bandit (MAB) is another popular technique
used in systems literature to find optimal configurations for
systems [3], [41]. We chose the most popular variant of MAB,
the epsilon-greedy algorithm, for our evaluation. At every step,

the MAB algorithm probabilistically selects either exploration
or exploitation. When exploration is selected, the algorithm
tries new random configurations, and when exploitation is
selected, the algorithm selects the configuration that has given
the lowest cost so far. When the same configuration is selected
multiple times, we choose to update the cost history using ex-
ponential moving average as it is the most common technique
used in the literature when conditions are changing [42].

We informally refer to Bayesian Optimization, MAB, and
EcoGD as learning-based algorithms since they learn from the
cost of the configurations they have tried so far and use this
information to decide on the next configuration to try.

D. Evaluation methodology

For our evaluation, we consider the energy consumption,
inference latency, and cost as the primary metrics (see Sec-
tion IV-C for our cost definition); we consider mean and
tail values for these metrics in different evaluation settings.
When running Grid Search and Linear Search, we run the
experiments till the end of the search space. DVFS, Bayesian
Optimization, MAB, and EcoGD are run for 150 optimizer
steps in the case of fixed and bursty request arrival patterns.
For the traces, we run the experiments for 3 hours as that is
the length of the traces. We also repeat each experiment 3
times. The error bars in the bar plots of Section VI represent
the standard deviation of the 3 runs.

All experiments are given 5 optimizer steps as a warm-up
period to get rid of bootstrapping effects such as PyTorch’s
lazy initialization. All algorithms and result interpretations
ignore these 5 steps. We also limit all algorithms’ optimizer
search space to prevent configurations that are known to be bad
and can cause queue build-up (and may crash the experiments);
these bad configurations comprised about 1% of the total
possible search space.

E. Hyperparameters settings of different algorithms

Different algorithms have different hyperparameters that
need to be tuned and set to achieve their best performance.
• Grid Search has no hyperparameters.
• Linear Sweeps has hyperparameters to define the order of

parameters (batch size, GPU frequency, CPU frequency) to
sweep through. We tried all 6 permutations of the order and
found that the differences in the results, especially the cost
achieved, were negligible. As such, we present the results for
the permutation that performed the best (within the narrow
margin of results): batch size sweep, then CPU frequency
sweep, and finally GPU frequency sweep.

• DVFS only optimizes the CPU and GPU frequencies. So,
we manually set the batch size to a fixed value. We initially
consider batch sizes of 8 and 16, and show both sets of
results in our evaluation. We find that batch size 16 is
superior, so we fix the batch size to 16 for DVFS under
trace-driven experiments.

• Multi-Armed Bandit (MAB) has hyperparameters to de-
fine the exploration/exploitation probability. While higher

7

exploitation probability results in lower energy consumption
as the algorithm sticks to the best configuration, it may
take much longer to find the best configuration. We set the
exploitation probability to 0.9, exponential decay to 0.9, and
the number of configurations when cold starting to 10, as
they gave the best results in our experiments.

• Bayesian Optimization, similar to MAB, needs some initial
configurations to start the optimization when cold starting.
We set this value to 10 to make it comparable with MAB.

• EcoGD has hyperparameters to set the memory size of
configuration cost history and the number of maximum
loopbacks allowed to jump out of local minima. Having
a higher memory size results in better performance when
running under fixed inter-arrival patterns, but it harms the
performance when the arrival pattern is dynamic. Setting a
lower value for maximum loopbacks may result in faster
convergence but can also lead to random spikes in the cost
achieved. We set the memory size to 10 and maximum
loopbacks to 10, as they gave the best results in our
experiments. Unlike MAB and Bayesian, EcoGD does not
need any initial configurations to start the optimization when
cold starting.

VI. EVALUATION RESULTS

In this section, we present our evaluation results. We
first consider Resnet50 under fixed and bursty load, in Sec-
tions VI-A and VI-B, respectively, to analyze the performance
and characteristics of different algorithms. This performance
analysis is summarized in Section VI-C for reference. We
then present our main results in Section VI-D using Resnet50
and BERT-Tiny under three time-varying, real-world request
traces; we analyze both mean and tail results under these trace-
driven experiments.

A. Comparison of algorithms under fixed load

1) Best configuration achieved: We start our evaluation
by comparing the performance of the best configuration
achieved by each algorithm. For Grid Search and Linear,
the best configuration is the one found after sweeping their
respective parameter search spaces. In the case of learning-
based algorithms (i.e., MAB, Bayesian, and EcoGD), the best
configuration is the one that is selected by the algorithm after
it converges; the algorithms are said to have converged when
the same low-cost configuration is selected multiple times in a
row. For DVFS, the frequency selection is done automatically
by the governors based on various external factors that are not
in our control, and DVFS does not have a distinct convergence
phase. For a fair comparison, we select as ‘best’ configuration
for DVFS the one that DVFS picks after it has taken the same
number of steps as that taken by EcoGD to converge.

Figure 3 shows the energy consumed, latency achieved,
and cost incurred by each algorithm once it converges to
the best configuration; we show results separately for a fixed
inter-arrival time (IAT) of 50ms and 90ms. All values for
all algorithms are normalized by that under Grid Search for
ease of comparison. Note that the cost is obtained based on

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

2.0

Be
st

 N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

Be
st

 N
or

m
. L

at
en

cy
One every 50 ms One every 90 ms

Inter Arrival Time (IAT)

0.0

1.0

2.0

Be
st

 N
or

m
. C

os
t

3.7 3.7

Fig. 3. Energy, latency, and cost incurred by all algorithms after convergence
under fixed request inter-arrival times.

homogenized energy and homogenized latency values (see
Section IV-C); as such, the cost values are not simply a mean
of the energy and latency values shown in the figure.

We see that Grid Search consumes the lowest cost in both
the cases (tied with EcoGD for 50ms IAT), as it sweeps
through all possible configurations to find the best configu-
ration. This is to be expected as Grid Search is essentially
an exhaustive search solution. Note that Grid Search does
not necessarily consume the lowest energy in all cases; for
example, it consumes more energy than Linear in the case of
50ms IAT. However, it does achieve the lowest cost, as that
is the objective function being optimized; see Section IV-C
for the cost definition. In the case of 50ms, it does so by
obtaining a low latency to make up for the slightly higher
energy consumption.

While Linear Search achieves roughly the same cost as
Grid Search in the case of 50ms, it does so by sweeping
through only a fraction of the configurations. But in the case of
90ms, Linear incurs more energy, latency, and cost than Grid
Search. This is because Linear independently optimizes the
three dimensions (batch size, CPU frequency, GPU frequency)
and does not consider the interactions between them. As such,
Linear Search may converge to a sub-optimal configuration.

DVFS with batch size 16 has higher energy consumption,
latency, and cost compared to Grid Search and Linear because
it does not have access to workload information (e.g., batch
size) and cannot optimize to it. DVFS with batch size 8 incurs

8

the lowest latency among all algorithms and approximately 2×
lower when compared with Grid Search because it has a lower
batch accumulation delay. However, it incurs as much as 3.7×
higher energy consumption. Consequently, it has the highest
cost among all algorithms. This result highlights the need for
joint optimization rather than only focusing on a single metric
(latency or energy).

On further inspection, we found that this high energy
consumption is because of the smaller batch size (8) for this
variant of DVFS. All other algorithms converged to a high
batch size (closer to 16) for their optimal configurations. In
general, energy efficiency improves with batch size (due to
amortization), and so a smaller batch size increases energy
consumption. Prior works analyzing the impact of batch size
in server-class machines for training and inference have made
similar observations [3], [15]. This highlights the importance
of optimizing workload parameters along with hardware
parameters for jointly optimizing energy and latency.

The learning-based algorithms (Bayesian, MAB, and
EcoGD) typically achieve a cost only slightly higher than that
achieved by (the exhaustive) Grid Search. They also achieve
lower cost than sub-optimal configurations found by Linear in
the case of 90ms IAT, and a much lower cost than that achieved
by DVFS for both IATs. In general, we can conclude that the
learning-based algorithms all achieve a fairly low cost under
fixed IATs. In fact, EcoGD achieves the lowest cost (tied with
Grid Search) in the case of 50ms IAT.

2) Total cost till convergence, including overhead: The
above best configuration results do not account for the energy,
time, and cost incurred to arrive at the best configuration (via
exploration, exploitation, and search space sweeps). To get
a comprehensive view of the results, we now consider the
cumulative energy consumption, inference latency, and cost
incurred during the time it took each algorithm to converge
to the best cost configuration. Figure 4 shows these metrics
for each algorithm normalized by that under Linear Search; we
chose Linear Search in this case for normalization because the
performance of Grid Search is quite poor and would make it
difficult to compare algorithms if normalized by Grid Search.

We see that Grid Search incurs prohibitively high over-
head, evidenced by the high values for all three metrics; this
is to be expected as it needs to sweep through the 6,000
configurations (modulo the ones we discard due to predictably
poor performance) to find the best one. Linear Search has
much lower consumption when compared to Grid Search, as
it only sweeps through 56 configurations, which represents
more than a 100× reduction in search space size. In fact,
Linear results in the lowest cost under 50ms IAT (but not
under 90ms IAT).

Bayesian has high energy consumption, latency, and cost
overhead; this is because Bayesian does not seem to converge
well and keeps exploring newer configurations, resulting in
frequent jumps in cost. This is because Bayesian Optimization
does not have a mechanism to exploit the best configurations it
has found so far and instead keeps exploring the search space.
While Bayesian Optimization is useful in offline optimization

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

3.0

To
ta

l N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. L

at
en

cy
One every 50 ms One every 90 ms

Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. C

os
t

48 6.5 31 4.1

17 9.3

37 5.0 17 3.6

Fig. 4. Total energy, latency, and cost with overhead incurred by all algorithms
till convergence under fixed request inter-arrival times.

(unlike our focus), it may not be very effective in online
scenarios [43], [44]. While MAB has lower energy, latency,
and cost compared to Bayesian, it still lags behind EcoGD in
cost (and energy).

DVFS with batch size 16 has higher energy consumption,
latency, and cost than EcoGD. This is because DVFS does
not have access to workload information and cannot optimize
for it. Similar to the observations for best cost, we see that
DVFS with batch size 8 has a lower latency because of the
lower batch accumulation time but has much higher energy
consumption and cost.

EcoGD has the lowest energy consumption among all
algorithms. Further, and more importantly, EcoGD achieves
the lowest cost under 90ms IAT and second-lowest cost (only
4% higher than Linear) under 50ms IAT. This superior per-
formance of EcoGD is because it is able to explore the search
space through an efficient route using (observed and estimated)
gradients while converging to the best configuration.

We also notice that the standard deviation is higher for MAB
and EcoGD in case of 90ms IAT than other algorithms. This
is because they explored the search space through different,
diverse routes, although they individually converged to the
same neighborhood of configurations eventually. For example,
in case of 90ms IAT, EcoGD converged to the neighborhood of
configurations [1.8, 0.96, 14], [1.91, 0.6, 15] and [1.19, 0.41,
15] in its three runs. Here, the first, second, and third elements
of the configuration triplet refer to the CPU frequency (in

9

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

2.0

Be
st

 N
or

m
. E

ne
rg

y
Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

Be
st

 N
or

m
. L

at
en

cy

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

Be
st

 N
or

m
. C

os
t

2.2 2.5

12 4.4 8.6 20 6.8 4.0

Fig. 5. Energy, latency, and cost incurred by all algorithms after convergence
under bursty request inter-arrival times.

GHz), GPU frequency (in GHz), and batch size, respectively.
We see that all three runs converged to high batch sizes; two
of the runs converged to low GPU frequencies; two other runs
converged to high CPU frequency. Despite the differences in
the configurations, we find that their converged costs are within
4% of each other. This shows that multiple, local optima with
similar cost values can exist; since we optimize for cost, the
actual converged configurations may be slightly different as
long as they have similar cost values. In the case of MAB,
the converged configurations were [1.57, 0.6, 13], [1.88, 0.51,
15], [1.91, 0.8, 15], and all resulted in converged costs that
were within 5% of each other.

B. Comparison of algorithms under bursty load

We now move on to the case where the inter-arrival time of
inference requests is bursty.

1) Best configuration achieved: Figure 5 shows the energy
consumed, latency achieved, and cost incurred by each algo-
rithm once it converges to the best configuration; we show
results under bursty inter-arrival times of 500ms and 900ms
between a batch of 10 successive requests. Grid Search incurs
almost the lowest cost, energy, and latency in both cases of
IATs as it sweeps through all configurations to find the best
configuration. Linear Search takes more energy, latency, and
cost than Grid Search in both IATs as it settles for sub-optimal
configurations.

Both versions of DVFS have higher costs than Grid Search
and Linear. We again find that DVFS with batch size 8 has the

highest energy and cost among all algorithms (because of its
lower batch size, as explained in Section VI-A1). We also see
that DVFS with batch size 16 has significantly higher latency;
this is because, with 10 requests arriving every 500ms and
900ms, it has to wait for enough batches to accumulate 16
requests before it can begin processing them.

MAB has significantly higher latency among the learning-
based algorithms for both IATs. We find that MAB results in
highly variable behavior under bursty load, often converging
to sub-optimal configurations. It also exhibits high standard
deviation in latency under 900ms IAT due to the variable
exploration routes it takes. Bayesian avoids the very high
latency that MAB incurs, but still has higher cost than EcoGD.

Among the learning-based algorithms, EcoGD has the
lowest cost and energy consumption for both bursty IATs.
In fact, it has the lowest cost among all algorithms for 900ms
IAT. It also has the second-lowest latency for both IATs among
learning-based algorithms.

Figure 6 shows a heatmap of the converged cost achieved
by each algorithm (see Figure 5) under the bursty 900ms
IAT over the configuration parameters being optimized; we
omit DVFS algorithms as their cost is quite high. The fig-
ure caption explains the axes and notations used. We see
that different algorithms converge to different configuration
neighborhoods. For example, Grid Search converges to lower
GPU frequencies whereas EcoGD converges to higher GPU
frequencies. Nonetheless, they both have low converged costs.
This suggests that there are multiple local optima that could
result in low cost. Bayesian and MAB converge to smaller
batch sizes, compared to EcoGD, which results in higher
energy consumption as energy efficiency typically improves
with batch size [3], [15].

2) Total cost till convergence, including overhead: Figure 7
shows the total energy consumed, latency achieved, and cost
incurred by each algorithm until it converges to the best
configuration; we show results under bursty inter-arrival times
of 500ms and 900ms between a batch of 10 successive
requests. All metrics for each algorithm are normalized by
that under Linear Search.

Grid Search again performs quite poorly due to its very large
search space. Linear continues to perform better than Grid
Search. However, compared to fixed load (Figure 4), Linear
does not perform as well in terms of total cost; for example,
DVFS (with batch size 16) and EcoGD have lower cost than
Linear for both IATs. This suggests that a static algorithm like
Linear is not well suited for bursty arrivals.

Among the DVFS configurations, DVFS with batch size
8 has higher energy than DVFS with batch size 16 but much
lower latency than DVFS with batch size 16 and all other algo-
rithms. This is because a single burst of 10 requests can easily
satisfy the batch size 8 requirement, resulting in very low
batch accumulation time. But, as discussed in Section VI-A1,
this comes at the cost of high energy consumption. Note that
the cost values shown are based on homogenized versions of
energy and latency (see Section IV-C for cost definition), and

10

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

12

1212

Batch
Size

Grid Search

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

11

11

Linear

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
) 1012 10

Bayesian

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

15

9

9

MAB

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

15 15
15

EcoGD

1.0 1.22 1.43 1.65 1.87 2.08
Cost

Reoccuring Configuration

Fig. 6. Heatmap of converged cost, shown as squares, achieved by all algorithms under bursty request inter-arrival time of 900ms between even batch of 10
requests. The axes indicate the CPU and GPU frequency for the configurations; the batch size is denoted as the numbers inside the squares. The color shading
indicates converged cost (see colorscale), with darker squares indicating lower cost. Circles indicate re-occuring converged configurations across runs.

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

3.0

To
ta

l N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. L

at
en

cy

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. C

os
t

34 4.5 36 5.0

22 3.6 11 3.4

11 4.3 24 3.3

Fig. 7. Total energy, latency, and cost with overhead incurred by all algorithms
till convergence under bursty request inter-arrival times.

so a very low (pre-homogenized) latency does not immediately
translate to low cost.

Among the learning-based algorithms, we again see
Bayesian performing poorly, similar to the case of fixed IATs,
due to its inability to converge to good configurations. MAB
again has a lower cost than Bayesian, but higher than EcoGD.

EcoGD continues to achieve very low cost, even under
bursty load. Specifically, EcoGD has the lowest cost under
500ms IAT and the second-lowest cost (only 5% higher
than DVFS with batch size 16) under 900ms IAT. This is
primarily due to its low energy consumption coupled with its
reasonably low latency. In fact, EcoGD achieves the lowest

energy consumption for both IATs (tied with DVFS with batch
size 16 for 500ms IAT). This shows that EcoGD performs well
for static and bursty conditions.

C. Key takeaways from synthetic load patterns

The performance evaluation of algorithms from the above
subsections can be informally summarized as follows. Grid
Search, not surprisingly, converges to low cost configurations,
but is not a viable option in practice due to its high overhead.
Linear can be sub-optimal and is not well-suited for bursty
workloads. DVFS with batch size 8 has low latency but high
energy consumption and cost, whereas DVFS with batch size
16 has lower energy consumption but higher latency and
high cost. Among the learning-based algorithms, Bayesian
has low post-convergence cost but high overhead. MAB has
higher energy overhead, which impacts its total cost; it also
converges to configurations with very high latency in bursty
IAT conditions, hurting its post-convergence cost. EcoGD
achieves low post-convergence cost with low overhead in both
fixed and bursty load conditions, typically achieving the lowest
total cost among all algorithms.

D. Performance evaluation under real-world traces

We now present our key performance evaluation results
by comparing the dynamic algorithms on real-world request
traces described in Section V-B. One objective here is to
evaluate how the algorithms perform under unpredictable and
potentially abrupt changes in request arrival rate. Another
objective is to study the impact on mean and tail metrics.
We do not consider the static Grid Search and Linear Search
algorithms in this subsection. Grid Search has very high
overhead, as established in Figures 4 and 7; this overhead will
be incurred much more frequently in trace-driven experiments,
making Grid Search impractical. While Linear has lower
overhead than Grid Search, its overhead and post-convergence
performance are still sub-optimal, especially under bursty
workload; this will get worse under dynamic traces.

1) Comparison for mean metrics: Figure 8 shows the
energy consumption, latency, and cost achieved by differ-
ent dynamic algorithms, normalized to those achieved un-
der DVFS, for the three different traces we consider using

11

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

3.0

M
ea

n
No

rm
. E

ne
rg

y
DVFS Bayesian MAB EcoGD

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

0.5

1.0

1.5

2.0

M
ea

n
No

rm
. L

at
en

cy

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

M
ea

n
No

rm
. C

os
t

Fig. 8. Mean energy, latency, and cost incurred by all algorithms under real-
world request traces using Resnet50 and BERT-Tiny.

Resnet50 and BERT-Tiny. Since DVFS with batch size 16
outperformed DVFS with batch size 8 for the fixed and bursty
load conditions, we only consider DVFS with batch size 16.

We start by again noticing the poor performance of
Bayesian, which incurs very high energy consumption, result-
ing in its high cost. We find that Bayesian does not converge to
good configurations, which is in agreement with our findings
from prior subsections. Coupled with the fact that the request
rate changes frequently in the traces, Bayesian results in the
highest cost in all six scenarios we consider.

DVFS maintains low energy consumption via its dynamic
modulation of CPU and GPU frequencies. However, under
the dynamic request traces, its fixed batch size contributes to
high accumulation delay during periods of low request rate,
resulting in high inference latency and (consequently) cost.
MAB, on the other hand, is able to dynamically change the
batch size and maintain lower latency compared to DVFS.
However, it is unable to achieve the low energy consumption of
DVFS, resulting in a somewhat similar (albeit slightly lower)
eventual cost as DVFS.

EcoGD consistently achieves low cost across all scenarios
by balancing energy consumption and latency. We see that
EcoGD achieves the lowest energy among all algorithms for
all Resnet50 scenarios. While it does not achieve the lowest
energy for BERT-Tiny scenarios, it makes up for it with lower
latency. On close inspection, we find that EcoGD has the
lowest cost (which is our optimization metric) for all scenarios,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0.5

1.0

1.5

2.0

Co
st

DVFS
Bayesian

MAB
EcoGD

Fig. 9. Cost timeseries of DVFS, MAB and EcoGD for Bellevue trace with
Resnet50 model.

except for Azure traffic with BERT-Tiny, where it has the
second-lowest cost (2% higher than MAB). Averaged across
all six scenarios, EcoGD reduces cost compared to DVFS,
Bayesian, and MAB by 11%, 41%, and 6%, respectively.
We find that the reduction is slightly higher for Resnet-50
scenarios (14%, 38%, and 10%, respectively).

2) Analyzing the adaptive behavior of algorithms: To better
understand the adaptive behavior of the different algorithms,
we plot their cost as a function of time for the Bellevue trace
with Resnet50 model in Figure 9. We see that DVFS exhibits
consistently high cost, largely because of its inability to adapt
the batch size. EcoGD almost always achieves the lowest
cost but does exhibit spikes in cost, occasionally resulting
in momentarily higher costs than DVFS. These spikes are
a result of our algorithm’s configuration explorations as it
attempts to look for better search spaces. MAB also exhibits
such spikes for a similar reason, though the cost spikes quite
significantly under MAB, often doubling its cost momentarily.
This is because MAB has a mandatory exploration step,
where it jumps to a random configuration from the entire
search space, potentially resulting in a momentarily high
cost. Bayesian (lightly colored to maintain visibility of other
lines) can be seen to exhibit very variable cost behavior over
time, with almost continual spikes. This is because Bayesian
Optimization’s expected improvement acquisition function is
not designed to be adaptable to changing workloads [45].
As the load pattern changes under request traces, previously
known configurations may become irrelevant, which Bayesian
Optimization does not take into account.

The above observations provide insights into the workings
of the algorithms and also highlight the consistently superior
performance of EcoGD throughout the trace duration. We
observe similar behavior for the other traces as well.

We also evaluated the performance of the algorithms under
a synthetic trace where the inter-arrival time changed abruptly
and immediately from 50ms to 90ms. We again found similar
results with EcoGD performing the best (and obtaining 10%
lower cost than the next best algorithm, MAB), suggesting
that EcoGD is able to adapt to rapid changes in the workload.
However, we note that the real-world traces we considered in
Section VI-D1 did not exhibit such abrupt changes.

3) Comparison for tail metrics: In real-world scenarios, it
is often important to optimize for tail metrics, such as tail
latency, in addition to mean metrics [17], [46], [47]. As such,

12

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

3.0

No
rm

. 9
9%

ile
 E

ne
rg

y
DVFS Bayesian MAB EcoGD

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

0.5

1.0

1.5

No
rm

. 9
9%

ile
 L

at
en

cy

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

No
rm

. 9
9%

ile
 C

os
t

7 4 9 4 6 4 5 3 7 3 9 4

5.3 10 2.0

5.3 3.8 9.6 2.8

Fig. 10. 99th percentile of energy, latency, and cost incurred by all algorithms
under real-world request traces using Resnet50 and BERT-Tiny.

we now analyze, in Figure 10, the 99th percentile energy
consumption, latency, and cost achieved by different dynamic
algorithms under all six trace-driven scenarios.

We see that the tail energy consumption under Bayesian and
MAB is very high compared to DVFS and EcoGD; this was
not the case for the mean energy consumption in Figure 8. We
also find that the tail latency is high for Bayesian, especially
for the BERT-Tiny model. MAB also exhibits high tail latency
in some scenarios.

In terms of cost, Bayesian, as expected, has a high tail
cost in all scenarios. MAB also results in a high tail cost,
especially under the Bellevue request trace. This is because of
MAB’s probabilistic random exploration, which can result in
high cost configurations being chosen over time. By contrast,
EcoGD achieves the lowest 99th percentile cost for all
scenarios, except for Azure traffic with BERT-Tiny, where
it has the second-lowest cost (13% higher than MAB).
Unlike MAB, EcoGD does not have a mandatory exploration
phase and instead can decide to either continue exploiting the
best known configuration or explore a new one based on its
knowledge of the neighborhood. This allows EcoGD to avoid
high cost configurations. Averaged across all six scenarios,
EcoGD reduces tail cost compared to DVFS, Bayesian, and
MAB by 11%, 72%, and 27%, respectively. We thus conclude
that EcoGD achieves low mean and tail cost, making it readily
applicable in real-world scenarios.

We also find that different algorithms perform slightly

differently depending on the DNN model being employed.
For example, MAB has lower latency and higher energy con-
sumption under BERT-Tiny compared to Resnet50 in Figure 8,
whereas Bayesian experiences high tail latency under the
BERT-Tiny model in Figure 10. This is because BERT-Tiny
has higher computational and processing requirements than
Resnet50, resulting in different opportunities for optimization.
However, the difference in performance for a given algorithm
across traces is not that remarkable. This is likely because
all real-world traces do exhibit similarly significant levels
of load variations (see Figure 2). We do see slightly high
tail latencies and costs under the Bellevue trace and slightly
low tail latencies and costs under the Azure trace for MAB
in Figure 10. This is likely because, among the traces we
employed, Bellevue had the highest average load and Azure
had the lowest average load.

VII. CONCLUSION

This paper focuses on dynamic and energy-efficient DNN
inference on edge. We present EcoEdgeInfer, a framework that
optimizes the tradeoff between inference latency and energy
consumption by tuning hardware and software parameters
dynamically and in response to changes in workload. Our core
contribution is EcoGD, our adaptive parameter tuning opti-
mization algorithm, inspired by Gradient Descent, that quickly
converges to near-optimal configurations with low overhead
while avoiding fluctuations in achieved cost. Evaluation results
under three different request arrival traces and two different
DNN workloads show that EcoGD consistently outperforms
existing baselines, lowering the mean cost objective by as
much as 55% (with 19% average reduction) and the tail cost
objective by as much as 90% (with 36% average reduction).

ACKNOWLEDGMENT

This work was supported by NSF grants CCF-2324859,
CNS-2214980, CNS-2106434, and CNS-1750109.

REFERENCES

[1] R. Pugliese, S. Regondi, and R. Marini, “Machine learning-
based approach: global trends, research directions, and regulatory
standpoints,” Data Science and Management, vol. 4, pp. 19–29, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666764921000485

[2] J. Vincent, “How much electricity does AI consume?
— theverge.com,” https://www.theverge.com/24066646/
ai-electricity-energy-watts-generative-consumption, [Accessed 05-
07-2024].

[3] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding
and optimizing GPU energy consumption of DNN training,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). Boston, MA: USENIX Association, Apr. 2023, pp. 119–
139. [Online]. Available: https://www.usenix.org/conference/nsdi23/
presentation/you

[4] D. Gu, X. Xie, G. Huang, X. Jin, and X. Liu, “Energy-efficient gpu
clusters scheduling for deep learning,” 2023.

[5] OpenAI, “ChatGPT,” https://openai.com/chatgpt/, [Accessed 05-07-
2024].

[6] GitHub, “GitHub Copilot,” https://copilot.github.com/, [Accessed 05-07-
2024].

13

[7] S. Luccioni, Y. Jernite, and E. Strubell, “Power hungry processing: Watts
driving the cost of ai deployment?” in Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Transparency, ser. FAccT
’24. New York, NY, USA: Association for Computing Machinery, 2024,
p. 85–99. [Online]. Available: https://doi.org/10.1145/3630106.3658542

[8] R. Haight, W. Haensch, and D. Friedman, “Solar-powering the internet
of things,” Science, vol. 353, no. 6295, pp. 124–125, 2016. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.aag0476

[9] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and
G. Wu, “Energy-aware inference offloading for dnn-driven applications
in mobile edge clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 799–814, 2021.

[10] P. S.K, S. A. Kesanapalli, and Y. Simmhan, “Characterizing the
performance of accelerated jetson edge devices for training deep
learning models,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
dec 2022. [Online]. Available: https://doi.org/10.1145/3570604

[11] A. Dutt, S. P. Rachuri, A. Lobo, N. Shaik, A. Gandhi, and Z. Liu,
“Evaluating the energy impact of device parameters for dnn inference
on edge,” in Proceedings of the 14th International Green and
Sustainable Computing Conference, ser. IGSC ’23. New York, NY,
USA: Association for Computing Machinery, 2024, p. 52–55. [Online].
Available: https://doi.org/10.1145/3634769.3634809

[12] L. Foundation, “Sharpening the edge: Overview of the lf edge taxonomy
and framework,” Jul 2020. [Online]. Available: https://www.lfedge.org/
wp-content/uploads/2020/07/LFedge\ Whitepaper.pdf

[13] “NVIDIA Embedded Systems for Next-Gen Autonomous Machines
— nvidia.com,” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/, [Accessed 05-07-2024].

[14] “Lernapparat - Machine Learning — lernapparat.de,” https://lernapparat.
de/jit-optimization-intro/, [Accessed 05-07-2024].

[15] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), 2016, pp. 477–484.

[16] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–15.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07, Stevenson, Washington, USA, 2007, pp. 205–220.

[18] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-aware computing for
datacenters,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp.
1270–1280, 2023.

[19] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li,
L. Zhang, W. Lin, and Y. Ding, “MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous GPU clusters,”
in 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). Renton, WA: USENIX Association,
Apr. 2022, pp. 945–960. [Online]. Available: https://www.usenix.org/
conference/nsdi22/presentation/weng

[20] E. Jeong, J. Kim, and S. Ha, “Tensorrt-based framework and
optimization methodology for deep learning inference on jetson
boards,” ACM Trans. Embed. Comput. Syst., vol. 21, no. 5, oct 2022.
[Online]. Available: https://doi.org/10.1145/3508391

[21] Nvidia, “Software-based power consumption modeling,” https://docs.
nvidia.com/jetson/archives/l4t-archived/l4t-3275/index.html, [Accessed
05-07-2024].

[22] E. Samikwa, A. D. Maio, and T. Braun, “Disnet: Distributed micro-split
deep learning in heterogeneous dynamic iot,” IEEE Internet of Things
Journal, vol. 11, no. 4, pp. 6199–6216, 2024.

[23] N. Diegues and P. Romano, “Self-Tuning intel transactional
synchronization extensions,” in 11th International Conference on
Autonomic Computing (ICAC 14). Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 209–219. [Online]. Available: https://www.
usenix.org/conference/icac14/technical-sessions/presentation/diegues

[24] F. Glover, “Tabu search - part i,” in ORSA Journal on Computing,

vol. 1, no. 3, 1989, pp. 190–206. [Online]. Available: https:
//doi.org/10.1287/ijoc.1.3.190

[25] “TorchVision — pytorch.org,” https://pytorch.org/vision/stable/index.
html, [Accessed 05-07-2024].

[26] P. Bhargava, A. Drozd, and A. Rogers, “Generalization in nli: Ways
(not) to go beyond simple heuristics,” 2021.

[27] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: The impact of student initialization on knowledge
distillation,” CoRR, vol. abs/1908.08962, 2019. [Online]. Available:
http://arxiv.org/abs/1908.08962

[28] S. P. Rachuri, F. Bronzino, and S. Jain, “Decentralized modular
architecture for live video analytics at the edge,” in Proceedings
of the 3rd ACM Workshop on Hot Topics in Video Analytics and
Intelligent Edges, ser. HotEdgeVideo ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 13–18. [Online].
Available: https://doi.org/10.1145/3477083.3480153

[29] “GitHub - City-of-Bellevue/TrafficVideoDataset — github.com,” https:
//github.com/City-of-Bellevue/TrafficVideoDataset, [Accessed 05-07-
2024].

[30] “Twitter Streaming Api — developer.twitter.com,” https://developer.
twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction, [Ac-
cessed 05-07-2024].

[31] “Internet Archive: Digital Library of Free & Borrowable Books,
Movies, Music & Wayback Machine — archive.org,” https://
archive.org/details/twitterstream, [Accessed 05-07-2024].

[32] “Deploy models with Amazon SageMaker Serverless Inference - Ama-
zon SageMaker — docs.aws.amazon.com,” https://docs.aws.amazon.
com/sagemaker/latest/dg/serverless-endpoints.html, [Accessed 05-07-
2024].

[33] C. Karakus, R. Huilgol, F. Wu, A. Subramanian, C. Daniel, D. Çavdar,
T. Xu, H. Chen, A. Rahnama, and L. Quintela, “Amazon sagemaker
model parallelism: A general and flexible framework for large model
training,” CoRR, vol. abs/2111.05972, 2021. [Online]. Available:
https://arxiv.org/abs/2111.05972

[34] M. Zhang, C. Krintz, and R. Wolski, “Edge-adaptable serverless accel-
eration for machine learning internet of things applications,” Software:
Practice and Experience, vol. 51, 12 2020.

[35] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety,
C. Delimitrou, and R. Bianchini, “Faster and cheaper serverless
computing on harvested resources,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, ser. SOSP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
724–739. [Online]. Available: https://doi.org/10.1145/3477132.3483580

[36] “Schedutil; The Linux Kernel documentation — docs.kernel.org,” https:
//docs.kernel.org/scheduler/schedutil.html, [Accessed 05-07-2024].

[37] S. Alabed and E. Yoneki, “High-dimensional bayesian optimization with
multi-task learning for rocksdb,” ser. EuroMLSys ’21, 2021.

[38] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’17, 2017.

[39] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building Auto-
Tuners with Structured Bayesian Optimization,” in Proceedings of the
26th International Conference on World Wide Web, ser. WWW ’17,
Perth, Australia, 2017, p. 479–488.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[41] G. Somashekar, K. Tandon, A. Kini, C.-C. Chang, P. Husak, R. Bhag-
wan, M. Das, A. Gandhi, and N. Natarajan, “OPPerTune: Post-
Deployment Configuration Tuning of Services Made Easy,” in NSDI
2024. Santa Clara, CA, USA: USENIX, 2024.

[42] S. Misra, S. P. Rachuri, P. K. Deb, and A. Mukherjee, “Multiarmed-
bandit-based decentralized computation offloading in fog-enabled iot,”
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10 010–10 017, 2021.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[44] B. Letham and E. Bakshy, “Bayesian optimization for policy
search via online-offline experimentation,” 2019. [Online]. Available:
https://arxiv.org/abs/1904.01049

14

[45] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, “Bayesian
optimization for dynamic problems,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.03432

[46] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11, San Jose, CA, USA, 2011, pp. 319–330.

[47] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of
ACM, vol. 56, no. 2, pp. 74–80, 2013.

15

