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● Disaggregated infrastructure (DI)
○ Optimized for specific resource

○ Reduces amount of unused resources

○ Easy rolling upgrades

○ High dependence on networks

■ Potential performance bottleneck



Overview

3

LAN/WAN

LAN LAN



Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN



Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources



Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources

● Connected over network

○ Large datasize => high transfer 

time



Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources

● Connected over network

○ Large datasize => high transfer 

time



Motivation - NDP

4

LAN/WAN



Motivation - NDP

4

LAN/WAN



Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using 

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction  : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

LAN/WAN



Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using 

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction  : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN



Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using 

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction  : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN



Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using 

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction  : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN

How to implement NDP?



Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using 

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction  : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size
Processing at resource constrained devices:

Can they handle the pushdown?

LAN/WAN

How to implement NDP?
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NDP implementations
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● PushdownDB [ICDE’2020]

● λFlow [CCGRID’2019]
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We aim to study performance of NDP in 

λFlow-like systems and then optimize it

More related works and detailed comparisions can be found in the paper
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Compute Node Storage Node

NDP Datasource API

● Spark driver for NDP

Client

● Post processing of

results
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Compute Node Storage Node

NDP Client

● Extracts attributes

required for NDP

● Translates query into

SQL command
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Compute Node Storage Node

REST API Handler

● Intercepts HTTP connections

from executors to datanodes

● Starts HDFS and SQLite

subprocesses
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Compute Node Storage Node

SQLite Engine

● Parses CSV files to create

tables

● Run operations that are

pushdowned
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Compute Node Storage Node

SQLite Streamer

● Enables processing while

loading data

More details in the paper

Code published at - https://github.com/open-infrastructure-labs/caerus-dike/

https://github.com/open-infrastructure-labs/caerus-dike/
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Analytical model - “Net-Aware”

● Predict the best pushdown 

strategy for an operation

● Using the parameters

1. Estimated execution time 

of operations

■ At Spark

■ At HDFS

2. Estimated time to transfer

■ Input data

■ Output data

NDP of an operation is useful if time taken for

Transfer input (HDFS → Spark) + Compute at Spark

>  Compute at HDFS + Transfer output (HDFS → Spark)
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QuerySystem Design
● NDP decision for a particular 

operation

● Decide # of operations to pushdown 
while initializing  (design constraints)

● Once in Spark need to continue in 

Spark (design constraints)

Start at 

Operation k=1

Is 

Condition == True

For operation k?

Operations ≥k in Spark Cluster

Operations <k in HDFS Cluster

No

Yes

k = k+1

14
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Evaluation - Experimental Results
● 6 Spark nodes

○ Total 70 cores for executors

○ Total 17.5 GB memory for 

executors

○ TPC-H Queries

● 10 Gbps between the clusters

● 1 Gbps per host

● 4 Datanodes (HDFS)

○ 1-4 cores each

■ Using Docker

○ CPU Freq - 2.67 GHz (original)

1.6 GHz (underclock)

■ Using cpufrequtils

○ Replication factor - 4

○ 100 GB dataset by DBGEN

● 1 Gbps per host

○ Changed using Tc and NetEm

15More details in the paper
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Net-Aware is always close to 

optimal

Selective pushdown can 

make significant difference

More experimental results and simulations in the paper



Conclusion

Summary of our paper

● NDP implementation

● Constructed an analytical 

model for optimizing NDP

● Experimental evaluation –

Net-Aware is close to optimal

● Implemented a discrete event 

simulator for large clusters
(skipped in the interest of time)

20



Thanks for your 
attention

Summary-

● NDP for Spark+HDFS

● Analytical Model 

● Experimental evaluation

● Discrete event simulator

21

Any Questions?


