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Why Edge for Video Analytics?

e |[ncrease in CCTV  cameras
=High data influx

=More video analytics pipelines
o for safety, security and traffic control

e Why not continue using cloud?
o Network Congestion
o Real-time requirement




Challenges

e Scenes observed Dby cameras
change over time
o Lighting conditions
o Visibility
o Traffic conditions

e Mobility of cameras
o More information
o Blind spots

=Changing network conditions




Edge deployment challenges

e Resource constraints
e Video analytics = GPU

e Heterogeneity

o Accelerators - GPU, TPU

o New nodes with new technologies
like FPGA, ASIC

o Upgrading = Gradual roll-out

e Distribution of load




Prior works

Rocket Microsoft Research Blog, 2020
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Live video analytics
Pipeline with pluggable models
Offload to Azure cloud

Spatula SEC, 2020
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Cross-camera analytics
Temporal and spatial correlations

Chameleon SIGCOMM, 2018
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Adaptation to scene of video
stream - Accuracy vs speed
Adaptation using cross camera
inference

JCAB INFOCOM, 2020
o Optimize config and bandwidth
allocation

o Network conditions, Energy Util,
Processing latency and video

scene
Hetero-Edge INFOCOM, 2020
o Distributes tasks and exploit
concurrency

o Not decentralized

VideoEdge, Follow Me at Edge
SEC, 2018;JSAC, 2018
o Task placement and migration in
mobile cameras



Design goals

1. Vision pipeline modularity
2. Improved latency and resource utilization

3. Adaptability



Vision pipeline modularity: Split-process execution

e Processing is sequential

e FEach block as an independent
microservice

e Easy addition of new functions
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Improved latency and resource utilization

e Parallel utilization

> Full-Res > Object Relative >
, Decoding Frames Detection Coordinates Counter

e Sharing of common functions
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Improved latency and resource utilization

Parallel utilization

Sharing of common functions

Conditional processing of functions
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Adaptability

e Everytask on one node

e Distributing all the tasks across
different nodes in different
networks

O Function Block with
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Qur Solution -
Partly distributing the tasks among
different networks
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Experimental Setup

e NVIDIA Jetson Nano
o Quad-core CPU
o 128-core GPU
o 4 GBshared RAM

e Functions
o HTTP based microservices
o Containers
m CPU utilization and binding
o Future - kubernetes like

Traffic Control (TC)
o Network Emulation (netem)
o LAN-1ms, 100 Mbps
o  WAN -40 ms, 50 Mbps
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Experimental Setup

Applications Implemented

e Vehicle Counting
e Vehicle Color Recognition
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Evaluation

1. How is the resource utilization?
o Memory, CPU, GPU utilization

2. Does distribution of Dblocks affect
performance?
Baseline -

Both application pipelines on a single machine

the
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Evaluation - Memory Utilization
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Evaluation

- CPU and GPU Utilization
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Evaluation - Impact of distribution of blocks
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Conclusion

e Modular decentralized architecture for video analytics at edge
e Functions splitting and distribution
e Feasibility study - more utilization and throughput

Future work-

e Easy programming construct - new blocks, pipelines
e Automated pipeline deployment
e Block deployment strategies
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Thanks for your
attention

Any Questions?

Summary-

Modular decentralized
architecture for video analytics
at edge

Functions splitting and
distribution

Feasibility study - more
utilization and throughput

Future work-

e Automated pipeline deployment
e Block deployment strategies
e FEasy programming construct




