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Abstract—For an industrial network that is expected to per-
form with high reliability and availability, we consider the prob-
lem of designing a low-cost approach to continuous monitoring
and maintenance of the communication links. A software defined
wide area network (SD-WAN) based solution is proposed to
adaptively monitor and manage the connectivity links from an
end device as per the application requirement. Each such device
may have multiple cellular interfaces, and we control the end-
to-end delay jitter variation across the different interfaces via
an intelligent traffic splitting scheme. We propose use of inter-
stream coding to achieve target delay jitter and also a high
reliability/availability. We use a decoupling approach to adapt the
probabilistic traffic split into various interfaces and the extent
of inter-stream coding. We provide an end-to-end measurement-
based traffic splitting scheme that relies on a Machine Learning
algorithm. We use a stochastic approximation-like algorithm
(operating at a slower timescale) to obtain the right coding
level. The various modules developed are pluggable in a pipeline-
manner and work with real interfaces as well as simulators like
openairinterface. We validate our analysis, and provide traffic
split performance results from our working multi-access system
(using cellular dongles, and also over openairinterface).

Index Terms—SD-WAN, Multi-access systems, Delay jitter,
LTE

I. INTRODUCTION

A multi-access system opens up the possibility of using
the various available interfaces to increase the aggregate data
transfer rate by pumping more and more data into the avail-
able interfaces. This has led to several commercial solutions
available in the market where the control of traffic into the
various available interfaces, and other such parameters, is
achieved using a software defined wide area network (SD-
WAN) approach.

Emergence of SD-WAN on fixed (enterprise) operators has
had significant effects on the market for MPLS VPNs, enabling
businesses to bond together normal Internet connections and
small-capacity MPLS links. The success of such solutions
leads one to wonder about using such solutions with only
cellular links.

Most of the multi-acess SD-WAN solutions available in the
market [1] are proprietary in nature and vary in their imple-
mentation. The encapsulation of the traffic can be implemented
at different layers of the communication stack, from MAC to
application layer [2]. However, all the solutions utilize some

sort of policy management by a central controller. Software-
based combining of the multiple connections has been at the
heart of the success story. This SD-WAN approach is used
to, for example, bond the various interfaces, among various
other capabilities. The main advantage of using the SD-
WAN approach to aggregate multiple legacy ISP broadband
lines seems to be coming from the relatively low cost when
compared to an MPLS-like setup.

The available enterprise solutions have mostly used the
multi-access capability to increase the throughput performance
of the system. However, one can also look at the problem of
improving the end-to-end delay and delay jitter performance
for static applications that require such guarantees. Such ap-
plications may generate very small traffic volume, but require
stricter delay or delay jitter performance. Exploring the via-
bility of cellular links-based multi-access systems to achieve
such performance is required. Traffic sources generating higher
data rates may also benefit from such solutions in a mobile
environment.

In [3], we worked on delay minimization in Multi-Access
Sytems by adding redundancy. In this paper we propose a
inter-stream coding based multi-access SD-WAN system in
which multiple cellular communication interfaces are utilized
to send data with added redundancy in order to improve the
overall end-to-end delay jitter performance. Voice and video
transmission quality suffer when the information sent over the
network is spaced inconsistently leading to a variable tempo
for the stream. This is more so in the wireless environment,
as the channel conditions may vary very quickly. The result
is audio or video that can have gaps in timing and become
impaired. The proposed method measures these gaps between
the packets and can evenly space these packets on the other
side providing what is called a ”jitter buffer” to realign the
timing of these packets to keep the video or audio stream
cadence intact. Jitter buffering has been performed before but
traditionally at the application servers and endpoints (i.e. IP
phones or IP video appliances). The unique differentiation here
is performing this inline on the network with multiple commu-
nication interfaces at the end points. The paper proposes the
approach which is easily scalable based on the requirements.



II. INTER-STREAM CODING IN MULTI-ACCESS SYSTEMS

Consider the simple case where the individual per-packet
delay on the various uplink cellular interfaces are independent
random variables, say Xi(n) for the nth packet on interface
i ∈ {1, . . . , N}. Considering the simplest case where the
same packet is replicated across all the interfaces (simulta-
neously) and the receiver considers the first received packet
and discards the duplicate packets that come later. The end-
to-end delay seen by the nth packet from the source stream
is then min1≤i≤N Xi(n), which is known to converge to a
deterministic value as N increases.

In the above discussion we did not take into account the
traffic generation rate of the source. Cellular interfaces pose
several issues where the per-packet delay seen by the traffic
stream is a function of the input rate into the interface. This
happens due to the complex interaction between the MAC
layer and Physical layer in data transmission in LTE, i.e., the
interaction between the transport block size allocation (which
could cover multiple IP packets) and the HARQ mechanism
to recover from wireless losses. This is illustrated in Figure 1
which provides a detailed description of the various layers
(LTE) involved in cellular multi-access system that we are
considering.
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Fig. 1. SD-WAN Control Options for Multi-Access.

Further, when the traffic generation rate is large enough
to rule out the use of pure replication as mentioned above,
Inter-stream coding can be used for reliability and delay
performance improvement in the following manner. Out of
the n+m interfaces, registered on possibly different operator
networks, we use m packets from the data stream to generate
additional n coded packets and then we send the original data
packets individually on m interfaces, while the remaining n
interfaces are used to send coded packets. We use Fountain
codes [4] so that the receiver can recover m packets from any
m of the n+m streams. Fountain codes, being rateless codes,
can generate unlimited number of encoded symbols with given
set of source symbols. And the original source symbols can
be recovered from any subset of the encoded symbols, given
the size of the subset should be equal to or only slightly
larger than the number of source symbols. A fountain code
is considered as optimal if the original k source symbols can

be recovered from any subset of encoding symbols of size
k. We are using systematic fountain codes, in which original
symbols are also transmitted along with the encoded symbols.
Systematic fountain coding allows us to read original messages
without any decoding.

The framework presented in this paper can be used in
multiple ways in practice, for example,

• When the source traffic generation rate R is small, it is
intuitive that the network coding approach boils down
to a pure replication code. This is the case for example
when a single data packet is sent infrequently, so that
m = 1 is a virtually forced constraint. This scenario is of
practical importance as it helps a utility provider to reduce
the MPLS-like subscription cost. For such scenario, we
can have very large n, which essentially implies a very
small deterministic delay, thus providing a delay and
jitter guarantee that is comparable to those obtained using
expensive approaches.

• Using an LTE system, while the commercial roll-out of
uRLLC solutions are awaited, would lead to providing
an LTE-specific guarantee on delays. Redundancy clearly
improves the reliability performance, while achieving
a smaller-than-single-interface-LTE delay. This is be-
cause in standard LTE system, the time required for a
schedulign request to uplink allocation to actual trans-
mission could be lower bounded by 10ms. While having
multiple interfaces helps us reduce the time that one
needs to wait for the scheduling request opportunity, thus
providing a virtually deterministic uplink transmission
time of 10ms.

When using multiple parallel LTE uplink connections (via
multiple LTE dongles), the following problems fall in the
purview of SD-WAN:
P.1 Controlling the number of interfaces to be used for a

given stream
P.2 Controlling the redundancy level to achieve a target delay

jitter performance
P.3 Controlling the split of traffic into the available interfaces

A. A Decoupling

We do not consider the problem of adapting the number of
interfaces (i.e., problem P.1). However, we follow an approach
of decoupling the problems P.2 and P.3.

Since the network operating point (including the load on
the eNB, etc.) would vary with time, we provide a learning
algorithm that continuously adapts the parameters used to
achieve P.2 and P.3.

When the number of interfaces available is given, say N ,
the problem of P.2 is essentially that of finding the right split
of N into two quantities m and n such that m is the number
of original packets used and n is the number of coded packets
generated per m original packets. This means that if the overall
traffic generation rate is R bits per second, then the actual total
load on the N interfaces is N ×R/m.

The approach of decoupling the problems of P.2 and P.3
would mean that the traffic split into the N interfaces is



oblivious to the nature of the packet, i.e., which packet is
original or which packet is coded. This means that we find an
N−dimensional probability (row) vector p = (p1, . . . , pN )
such that p · 1 = 1, where 1 is a column vector of all ones.
The interpretation of pi is that of the probability that a packet
coming into the splitter function is sent over interface number
i. It is to be observed that we are implicitly forgetting the
nature of the packet, i.e., original or encoded, when using this
probabilistic split. One could envision multiple variants of this
logic where awareness of the nature of the packet is included
in the splitting logic, however, we do not address those aspects
in the current work.

III. THE LEARNING ALGORITHMS

The learning algorithm used in this paper can be thought
of as a two-timescale stochastic approximation algorithm
where the redundancy (n) is decided on a slower time scale
compared to that of the splitting probability. We provide a
brief description of these algorithms in the below and detailed
implementation description is provided later in the paper.

A. Splitting

At the kth update occasion, the value of p(k) is changed
as follows:

p(k + 1) = p(k) + ε
(p(k)− softMax(k))

||(p(k)− softMax(k))||
.

This approach is used to move the operating point over
the N−dimensional probability simplex. softMax(k) is the
output of the softMax algorithm at the kth update instant, and
takes into account the estimate of the delay jitter for each of
the interfaces. Here ||·|| is the standard L2 norm. The approach
here is to move very small amount (ε) in the direction towards
softMax(k) vector.

B. Redundancy

In our recent paper (citation suppressed due to double
blind review), we showed that for a given n, the end-to-
end per-packet delay would be a decreasing function of m.
Unfortunately, no such structural result is available for the
case of delay jitter when the constraint of n + m = N is
imposed. Thus, it is not straightforward to know the favorable
direction in which the value of n should be moved based on
the delay jitter observations. Under such cases, we use the
following intuition to guide us:

1) for a given operating scenario (i.e., a given network
load and radio conditions for an eNB), there is an
optimal value m∗ such that the end-to-end delay jitter
is minimized for m = m∗. This implicitly assumes that
the splitting probabilities are optimally selected for each
operating value of m, i.e., the faster time-scale of splitting
probability adaptation is used. We also assume that the
delay jitter as a function of m is a unimodal min function.
Even though it looks intuitive that using a value of m = 1
would provide the best delay jitter, one has to note that
the aggregate rate into the various interfaces will increase

with a decrease in m, thus countering the beneficial effect
of decreasing m.

Thus, when we get the estimates of delay jitter (J(t)) at
two successive update instants, we use the following equation
to change the value of m:

m(t+ 1) = m(t) + δ(t)

where δ(t) is obtained using Table I. Here θ is a tolerance

m(t)−m(t− 1) J(t)− J(t− 1) δ(t)
> 0 < −θ 1
> 0 > θ -1
< 0 < −θ -1
< 0 > θ 1

TABLE I
TABLE SHOWING THE DIRECTIONS OF CORRECTION FOR ADAPTING THE

VALUE OF m.

level to avoid ping-pong effect.

IV. IMPLEMENTATION DETAILS OF THE ADAPTATION
LOGIC

We have developed the following independently pluggable
blocks:
Inter-Stream Coder (ISC) For a given configuration input of

(n,m), the block takes m original incoming packets into
the module and outputs n addition packets that are the
coded packets using fountain coding operation on the m
original packets. Thus, for each m input packets, this
module provides m + n output packets. The collection
of such m + n packets is called a segment. This block
also adds the required header information including the
values of m and n, and the sequence number of individual
packets within such a segment. Thus, for an incoming
rate of R packets per second, the ISC module provides
an output stream of Rn+m

m packets per second.
Inter-Stream Decoder (ISD) For a given stream of input

packets, each packet is parsed to get the information about
the segment that this packet belongs to, and when m
packets of the same segment1 are received, it performs
decoding to retrieve the m original packets.

Splitter The splitter takes a packet stream and uses the
algorithm provided in Section III-A to split these packets
into the N available interfaces using the probabilistic
splitting. This module does not look into the nature of the
packet that it is deciding to send on any given interface.
This module is expected to be expanded in the future to
take into account a cross-layer approach where it can
be linked with the ISC block, with an awareness of
coded/redundant packet.

Redundancy Recommendation Engine (RRE) This
module is on the sender side and provides the
recommendation of m and n to the ISC modules. This
module works based on the feedback it receives from its

1Recall that a segment consists of m original and n coded packets. This
module does not distinguish between original and encoded packets.



peer. This module implements the algorithm provided in
Section III-B.

The ISC and ISD functionality can be considered as a new
layer between the application layer and network layer. Figure 2
gives the functioning of the ISC when m = 2 and n = 1. To
help ISD in decoding the packets at the receiver side, the ISC
module adds the following attributes in every generated packet:

Fig. 2. NC Layer when m = 2 and n = 1.

1) Packet number: packets of a segment are numbered in the
range 1 to n+m.

2) Length of packets
3) Parent packet’s sequence number

The coding technique we are using in our ISC imple-
mentation is linear coding. Linear coding is based on linear
combination of messages to encode and decode. For encoding
and decoding we are using an encoder matrix. It generates
encoded packet in the following manner:

En.1 Take m number of original packets and take dot product
of it with a row of encoder matrix (the size of row of
encoder matrix is equal to m).

En.2 Add the row index of encoder matrix in the ISC layer
under ‘encoding index’.

En.3 Repeat steps 1 and 2 above n number of time to generate
n encoded packets.

The ISD module on the receiver maintains a dictionary to
store the segments. It takes any m packets from the segment to
decode the original packets and put them in a encoded packet
list. The decoding is done in the following manner:

De.1 First it creates the encoder matrix used for encoding the
packets at the sender by checking the ‘encoding index’
field of the ISC layer.

De.2 Take the inverse of the m×m encoder matrix to produce
a decoder matrix.

De.3 Multiply the decoder matrix with the encoded packet list
to produce decoded packet list.

De.4 Send the decoded packet to the gstreamer for playout. We
call this step Flush.

De.5 Delete the segment from the dictionary.
In our implementation, we found that, sometimes, for a

segment ISD is not receiving enough packets (received packets
< m) to run the decoding algorithm. In this case for decoding,
we follow the following steps:

MF.1 Wait for W (= 40) segments.
MF.2 If ISD does not receive enough packets for the segment

in the waiting time, send the original packets to the
gstreamer for palyout and discard the encoded packets.
We refer this step as “Mini Flush”

MF.3 Delete the segment from dictionary.
The receiver runs a feedback algorithm on a different

thread to send feedback for the performance of the current
redundancy and performance of the various interfaces. Thus,
we have two types of feedback:
Type-1 feedback for probability optimisation.
Type-2 feedback for redundancy optimisation.

The traffic splitting problem (P.3) is viewed in the frame-
work of Multi-arm bandit problem [9]. Considering an in-
terface as an arm and for the next packet generated from
ffmpeg, our traffic splitter has to decide which interface (or
arm) to choose to transmit the packet. We initialized the
probabilities of choosing interfaces to a uniform probability
distribution. Based on the performance score of the interfaces
from feedback we are optimising the probabilities.

In the receiver side we are calculating the performance score
in the following manner:

MA.1 Calculate the delay-jitter for each interface.
MA.2 For every 100 packets from an interface calculate the

average jitter.
MA.3 Calculate the performance score for each interface using

a reward function, which is defined as inverse of average
jitter.

MA.4 Send feedback of performance score to the sender side.
On the sender side probabilities are optimised in the fol-

lowing manner:
1) Receive the feedback
2) Check if feedback is of Type-1.
3) For Type-1 feedback: extract the performance score of

the interfaces from the message.
4) Apply softmax function on perfromance score to get the

recommended probablities.
5) Update the probabilities.

V. IMPLEMENTATION ON OPENAIRINTERFACE

The various modules developed as part of this activity are
portable to different systems in a plug-n-play manner. We
used the module pipeline in an openairinterface-based large
network emulation system where multiple virtual machines
were used to run individual UEs (softmodem) on one machine,
and similarly, multiple virtual machines on another machine
were used to run individual eNBs. The channel model between
the different UE-eNB pairs were varied. One of the limitations



Fig. 3. The overall pipeline when using the openairinterface. The figure shows the use of ffmpeg as traffic source and gstreamer as the playout utility.

Fig. 4. The various blocks introduced for the adaptation logic.

of this system is that we have not been able to simulate
multiple UEs connected to the same eNB. This is a known
issue in openairinterface, and work on resolution of this is
ongoing.

For our implementation, we choose to use the “siml1”
option in the simulator which enables simulation of Layer 1
(PHY) [7] and connects UE-eNB pair through IF4.5 interface.
Through siml1, even though all the virtual machines and host
machines are connected through ethernet and virtual network
bridges, they exchange only OFDM symbols [8]. The presence
of abstraction till the resource elements in IF4.5 allows the
control of SNR making it suitable for our testbench.

For the testbench, we made a total of five pairs of UE-eNB
virtual machines (VM). The host computers of all eNBs and all
UEs are connected through a physical ethernet cable and all the
VMs are bridged to this network. The host containing the UEs
act as a packet splitter and packets sent to it gets redirected to
a particular VM based on the destination port. All UE VMs
forward the packets to the emulated NIC interfaced made by
the Openairinterface (OAI) script. All eNB VMs forward the
incoming packets from OAI back to the eNB host which acts
as an aggregator. This architecture is illustrated in Figure 3.

It is to be noted that the same modules developed for
working with real world interfaces (cellular dongles) are used
to create the end-to-end pipeline in the openairinterface setup

as well. The developed modules thus seamlessly plug in to the
ffmpeg and gstreamer pipelines.

VI. RESULTS

We have implemented the proposed algorithm for transfer
of real-time videos from a workstation that is connected
to a video camera on one side and has multiple cellular
dongle-based internet connectivity. The same setup also works
over openairinterface. The RTP packets are captured using
the Python’s raw networking support and additional coded
packets are generated. These packets (original and coded)
are individually encapsulated inside a properly-formatted UDP
packet and then sent across different cellular interfaces toward
the end-device intended for reception of video stream. The
values of n and m are dynamically configurable in the spirit
of SD-WAN, using the adaptation logic provided in the paper.

When running the end-to-end video over openairinterface
setup with multiple interfaces, we set the video stream con-
figuration of ffmpeg to 30fps, with rate of 500kbps and the
total number of interfaces was set to N = 5. The adaptation
algorithm uses a tolerance level of 30ms to avoid the ping-
pong effect as mentioned earlier.

Fig. 5. Evolution of m in the less variable setup of openairinterface

In fig. 5, we see that target redundancy values vary as the
update commands arrive. In the case of initial redundancy



Fig. 6. Evolution of p in the less variable setup of openairinterface

3, the model explores the channel conditions by varying the
values between 2 and 4 then later continues with 4 indicating
convergence. With initial redundancy 2, we can see that the
model tries to adapt to the best value but keeps oscillating
between 1 and 3.

In fig. 6, we can see how the packet distribution probability
vector changes with commands. The initial probability vectors
for runs are (0.2,0.2,0.2,0.2,0.2) and (0.1,0.1,0.2,0.3,0.3) but
the channel conditions were not changed. Hence, in the second
run, the probability vector converges close to that of the first
one even though the initial vectors are far.

Figure 7 provides the values of jitter obtained at various
update instants in the real-world setup where N = 7 interfaces
(from different operators in India) were used. The traffic
generation rate was again varied using ffmpeg parameters
for the live camera feed. We observe that for large rate,
2Mbps, the adaptation algorithm indicates requirement for
large number of redundant interfaces, while for 1Mbps traffic,
small number of redundant interfaces were required. For very
small data generation rate, i.e., 0.5Mbps, we see that there was
not enough penalty in the system to bring down the number
of redundant interfaces.

Fig. 7. Jitter vs n as obtained from real world implementation run for N = 7.

VII. CONCLUSION

We have presented, in the SD-WAN context, a configurable
solution that uses availability of multiple access. The objective
of the SD-WAN controller was set to limiting the end-to-end
delay jitter for a real-time traffic. A two-time scale adaptation
scheme was provided to decide on the number of redundant
interfaces required and also finding the ideal traffic split into
the available interfaces. A real-world implementation of the
proposed solution is provided that works with real traffic
sources and can be plugged in as pipeline to the ffmpeg sender
or to LTE network simulator like openairinterface.
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